
Learning Android Control using Growing Neural
Networks

Heni Ben Amor, Shuhei Ikemoto, Takashi Minato and Hiroshi Ishiguro
Department of Adaptive Machine Systems

Osaka University,
Osaka, Japan,

Email: {amor,ikemoto,minato,ishiguro}@ed.ams.eng.osaka-u.ac.jp

Abstract— Fixed sized neural networks are a popular technique
for learning the adaptive control of non-linear plants. When
applied to the complex control of android robots, however, they
suffer from serious limitations, such as the moving target problem
i.e. the interference between old and newly learned knowledge.
To overcome these problems, we propose the use of growing
neural networks in a new learning framework based on the
process of consolidation. The new framework is able to overcome
the drawbacks of sigmoidal neural networks, while maintaining
their power of generalization. In experiments the framework was
successfully applied to the control of an android robot.

I. I NTRODUCTION

Neural networks have proved to be powerful and popular
tools for controlling robots with many degrees of freedom.
Particularly, their ability to learn and capture non-linear de-
pendecies between control variables has contributed to this
popularity. For example, using a process called “Feedback-
error learning” [2] the neural network can learn to predict the
effect of issued motor commands. After learning, the network
represents an inverse model of the robot’s dynamics which
enables it to generate optimal actions for control by cancelling
out any undesired effects.
Recently, some critics arouse about the use of sigmoidal neural
networks (neural networks with sigmoidal kernel) for robot
control. For example, Vijayakumar and colleagues [6] identi-
fied the following drawbacks of sigmoidal neural networks:
• The need for careful network structure
• The problem of catastrophic forgetting
• The need of complex off-line retraining

The first point refers to the complex relationship between the
network structure and it’s ability to learn particular functions.
It is well known in the machine learning community that
particular functions (for instance XOR) cannot be learned if
the network structure is not appropriately chosen. The problem
of catastrophic forgetting refers to the interference between old
and newly learned knowledge. When been sequentially trained
on two problemsA and B, it is often found that the network
will have forgotten most of it’s knowlede of problemA after
training on problemB. Due to this drawback it is particularly
difficult to employ neural networks in incremental learning
applications. However, if we really want to achieve lifelong
learning robots [5], it is of premordial necessity that robots
are able to aquire new knowledge without forgetting previ-
ously learned information. According to [6] complex off-line

learning is needed to overcome the problem of catastrophic
forgetting, which “from practical point, (this approach) is
hardly useful”. Due to these identified drawbacks Vijayakumar
et al. propose the use of learning techniques based on local
receptive fields, in which the above problems do not seem
to appear. However, due to their local nature such techniques
have limited ability to generalize.
In contrast to this, we try to profit from the sigmoidal neural
networks ability to generalize, while minimizing the risk of
forgetting knowledge. We do this by adressing the above three
problems and presenting ways to solve them. In the following
Section II we will introduce the process of consolidation and
present a computational framework for motor learning based
on consolidation. Then in Section III we introduce the concept
of growing neural network. In Section IV we present results
from a first implementation of this framework on an android
arm.

II. CONSOLIDATION LEARNING

All problems mentioned above in relation to sigmoidal
neural networks can interestingly also be found in humans.
For example in [3] it was demonstrated that two motor tasks
may be learned and retained, only if the training sessions are
seperated by an interval of approximately 6 hours. Otherwise,
learning the second task leads to an unlearning of the internal
model of the first task. However, if sufficient temporal distance
is taken between the tasks, then the corresponding motor
skills are retained for long time (at least 5 months after
trainig). The reason for this is a process calledconsolidation.
During training, the acquired information is first stored in the
prefrontal regions of the cortex. In this phase the informa-
tion is still fragile and sucseptible to behavioral interference.
Then, approx. 6 hours after trainig, consolidation shifts the
information to the premotor, posterior and cerebellar cortex
in which the information is stored for a long period of time
without being disrupted. In this process the brain engages
new regions to perform the task at hand. Thus the number
of neurons needed for a particular task is adaptively figured
in the consolidation process.
Although humans share similar problems with sigmoidal neu-
ral networks, we are still able to learn a variety of different
tasks, and recall information which was acquired a long time
ago. Obviously, this raises the question whether a computa-



tional implementation of this process (or a simplified version
of the latter) can make sigmoidal neural networks attractive
again for robot control.

A. A Computational Framework for Consolidation Learning

To answer the above questions we propose a new compu-
tational framework for motor learning in which consolidation
can be easily incorporated. Figure 1 shows the components
and the working of this new framework.

Consolidation

Rehearsal
Offline

NN
Small

Offline Learning

Online Learning

Big
Neural Network

Long−time Memory

Fig. 1. Consolidation learning framework. A new problem is first learned
by a small neural network. The information gained from this NN is then used
to teach a big neural network in an offline process involving rehearsal of old
information.

The most striking feature of the proposed consolidation
framework is the separation between short-time memory
(represented by the small neural network) and the long-time
memory (represented by the big neural network) of the
system. Each new task or subtask is first learned online by
the small neural network. Learning is continued until the
network becomes an expert in that particular task. Once
this online phase is finished the expert network teaches
newly acquired knowledge to the big neural network in the
consolidation phase. This process is done offline. To ensure
that the network has enough memory capacity to learn the
new knowledge, learning is performed using a growing neural
network technique (see Section III). At the same time, old
knowledge contained in the big neural network is rehearsed
in order to avoid catastrophic forgetting.

Algorithm 1 illustrates the coarse flow of consolidation
learning. Here, the setT = {t1, ..., tk} refers to thek
subtasks to be sequentially learned. The numberβ is a biasing
parameter, which biases learning towards new or towards old
information. Ifβ equals zero, then the network will mainly try
to remember old knowledge without learning new information.
Otherwise, ifβ equals one, then the network will eventually
forget all previous knowledge. Setting this value to0.5 is a
results in a good tradeoff. Finally, the numbern represents the
size of the training set to be used during consolidation.

Algorithm 1 Pseudocode for consolidation learningi = 0
1: Learn new taskti unsupervised learning (online)
2: Create setA with n∗β supervised data from small neural

network
3: Create setB with n ∗ (1 − β) supervised data from big

neural network
4: Combine supervised dataA ∪B
5: LearnA∪B by using the big neural network and growing

technique (offline)
6: i← i + 1
7: GOTO 1

The most critical point of this algorithm is the reinstatement,
e.g. the creation of supervised data used for rehearsal. One
way to create the supervised data would be to store the old
input vectors which were previously used for learning. By
computing the output of the big neural network for each of
these input vectors, we get input-output pairs. These pairs can
then be used as a training set during rehearsal. The drawback
of this approach is that it requires storing input data of all
training phases so far. Another approach to reinstatement is
to use random input vectors when computing the rehearsal
training set from the big neural network. On one hand, this
has the advantage of getting rid of additional data to be saved.
On the other hand, it might detoriate the performance of
consolidation. A random input might lie in an area of the input
space, for which the long-time memory did not get any training
data so far. In such a case, the rehearsed pattern might conflict
with a newly learned pattern from the small neural network.
While in this paper we are mainly using the former approach
(stored input data), we are currently investigating the use of
randomly reinstated information for rehearsal.

B. Advantages of Consolidation

In contrast to the considerations of [6], the approach
using offline consolidation is found to be highly effective.
It enables us to benefit from the sigmoidal neural networks
power of generalization. The consolidation framework also
enables us to draw a neat line between the problem of
learning new information and its incorporation into previously
acquired knowledge. In the proposed framework, however,
the incorporation step is done in an offline process. As such
it can be much faster, as it is not dependent on the robot
(or other time consuming ressources) anymore. Another
interesting point is the fact that the small neural network acts
as filter between the environment and the long-time memory.
Only when the online phase is finished and a good local
approximation of the current task is found, the long-time
memory is retrained. As a result the big-neural network is
freed from performing random walk cycles, which are needed
for exploring a new task. Finally, by mimicking the human
way of motor learning, consolidation makes the process of
robotic motor learning more realistic from a cognitive science
point of view.



Fig. 2. Different desired and executed trajectories of the android arm after
consolidation learning is finished. Time is given in microseconds.

III. G ROWING NEURAL NETWORKS

Instead of having a human determining the number of
hidden neurons and layers, growing neural network methods
determine the network structure adaptively according to the
problem difficulty. In doing so, they also reduce the effect of
catastrophic forgetting, as new neurons are allocated everytime
new data is learned. This adaptive memory capacity removes
the necessity of overwriting previously learned knowledge.
Still, if used in a naive way, growing neural networks run into
the danger of overwriting acquired knowlede. In this section,
we will first introduce two of the most successfull existing
techniques used for growing neural network architectures.

A. Cascade Correlation

In this chapter, we summarize the Cascade-Correlation
learning architecture, as formulated in [1]. Cascade-
Correlation is a learning method for growing neural net-
work architectures. Cascade-Correlation starts learning with
minimal structure, and then adds new hidden unit while
maximizing correlation between output of the new hidden unit
and outputs of output units. Maximizing correlation indicates
maching the direction of primary error components and output
of new hidden unit each time.
Additionally, we freeze its input weights when it is recruited
to the network. Eventually, the neural network obtains deep
structure with constructed hidden units which have permanent
input weights and receive input connections from all previous
layer’s units. Thus, hidden units become permanent feature-
detectors in the network, and the newly added unit indicates
a new detector that is of higher order than previously added
ones.
For example, Figure 2 illustrates the structure of the neural net-
work when 2 hidden units are added. The cascade-correlation
can solve two principal problems of backpropagation learning,
namely the “Moving Target Problem” and “Step Size Problem”
because of specialized and fixed hidden units and its deep
structure.

B. Neuroevolution

The term Neuroevolution refers to evolving the topology and
weights of a neural network using a genetic algorithm. One of
the most successful algorithms for neuroevolution is the NEAT
algorithm (Neuro Evolution on Augmenting Topologies) [4].
NEAT first starts with a population of minimal structure
netoworks, e.g. networks with zero hidden neurons. Each
network is represented by a genome which holds all necessary
information about structure and weights. In each generation
mutation operators acting on the genomes successively add
new hidden neurons and connections between neurons. At the
same time, mutation also changes the weights of the network.
Additionally, a crossover operator makes sure that two “good”
networks can mate in order to produce an even better child.
Using historical markings NEAT is able to crossover two
genomes which have entirely different structure. Finally, a
speciation operator protectes promising genetic material from
vanishing from the population.

IV. EXPERIMENTS& RESULT

A. Android Robot

In this chapter, we introduce the robotic platform for our
experiment and explain it’s characteristics. The employed
platform is an android; a humanoid robot with a realistic
human-like appearance and skin. The android is developed
by the company Kokoro Ltd. Only upper-body is actuated
and has 43 DOF. Each joint of the android is actuated by
pneumatic actuators e.g. a pneumatic cylinder and motor. In
our experiments we only use the Arm of the android which has
5 DOF. The experiment which is assembled by the arm, airflow
control valves, regulator, and compressor, is shown in Figure
3. In the beginning, the compressor generates high pressured
air to actuate the Arm. Secondly, the pressure oscillation
and extra moisture which are contained in high pressured
air, are removed by the regulator. Finally, the air which is
controled by airflow control valves actuates the arm. The
compressibility of the air can contribute to safe operation of
the android. This advantage is important for a communication
robot which aims at interacting with human partners. The arm
has strong nonlinearity which is caused by pneumatic actuators
and construction of joints. The reasons of nonlinearity which
comes from the pneumatic actuators, can be explained by the
compressibility of air and the friction of sliding parts in the
actuators. Usually actuators in robots are used in combination
with a decelerator, to cancel the nonlinear term such as coriolis
effect in the robot’s dynamics. In contrast, pneumatic actuators
are used without decelarators and can therefore not cancel out
the nonlinear term. As a result its control is difficult.

B. Experiment

In order to evaluate the performance of the new consoli-
dation framework, the following experiment is set up. Three
different reference trajectories are incrementally used for
learning. The robot arm has to learn to follow these reference
trajectories by minimizing the error. In order to have easy anal-
ysis of the results, only 1 DOF was used for the experiment.



Fig. 3. The setting of the experiment for testing consolidation: An android
arm is actuated by air pressure coming from a compressor.

After sequentially learning the three reference trajectories,
the resulting neural network is tested for generalization and
forgetting. For this, a validation set is created including the
three reference trajectories and two new (not learned) trajec-
tories. The tests were performed using the following different
learning methods: Feedback-error Learning using static neural
network of 20 neurons, NEAT and consolidation learning.

C. Results

In Figure 4 we see the the trajectories performed by the
neural network learned through consolidation in comparison
with the reference trajectories. It can be seen that the network
learned to follow the trajectories without forgetting. The
network was able to solve trajectories that have not been
learned. Thus, it was able to generalize from given knowledge.
Compared with the results of simple Feedback-error learning
(see Figure 5), the trajectories also seem much smoother. Table
I shows the mean squared of each method on the validation set.
We can see from the table, that NEAT performed slightly better
than Feedback-error learning. The reason for this might stem
from the fact that NEAT employs populations of solutions.
This provides the possiblity, that information about an old task
is still contained in one of the population members.

Method MSE
NEAT 0.055
Feedback-error Learning 0.056
Consolidation Learning 0.044

TABLE I

MEAN SQUARED ERROR MADE ON VALIDATION SET.

V. CONCLUSION

In this paper we presented a new computational framework
for motor learning using growing neural networks. The
framework is based on a process called consolidation which
is inspired by neurobiological findings in humans. The
framework is evaluated on an android robot and found to be
successfull in avoiding catastrophic forgetting and achieving
high generalization. However, the current implementation

Fig. 4. Different desired and executed trajectories of the android arm after
consolidation learning is finished. Time is given in microseconds.

Fig. 5. Different desired and executed trajectories of the android arm after
Feedback-error learning with static network of 20 hidden neurons.

assumes that input vectors used during learning are stored
for future rehearsal. Depending on the learning task this can
take large amounts of disk space. To improve this, we are
currenlty investigating the reinstatement of rehearsal patterns
through random input vectors.

REFERENCES

[1] S. Fahlman and C. Lebiere. The cascade-correlation learning architecture,
1990.

[2] M. Kawato. Feedback-error-learning neural network for supervised motor
learning. Advanced Neural Computers, pages 365–472, 1990.

[3] R. Shadmehr and H. Holcomb. Neural correlates of motor memory
consolidation.Science, pages 821–825, 1997.

[4] K. O. Stanley and R. Miikkulainen. Evolving neural networks through
augmenting topologies.Evolutionary Computation, 10:99–127, 2002.

[5] S. Thrun. Lifelong learning algorithms. Kluwer Academic Publishers,
Norwell, MA, USA, 1998.

[6] S. Vijayakumar and S. Schaal. Fast and efficient incremental learning for
high-dimensional movement systems. InProc. IEEE Int’l Conf. Robotics
and Automation, pages 1894–1899. IEEE Press, Piscataway, N.J., 2000.


