
Teaching by Touching: an Intuitive Method

for Development of Humanoid Robot Motions

Fabio Dalla Libera (Univ. of Padua), *Takashi Minato (JST), Ian Fasel (Univ. of Texas),
Hiroshi Ishiguro (Osaka Univ.), Emanuele Menegatti, and Enrico Pagello (Univ. of Padua)

Abstract— This paper investigates touching as a natural way for humans to communicate with robots. In
particular we developed a system to edit motions of a small humanoid robot by touching its body parts.
This interface has two purposes: it allows the user to develop robot motions in a very intuitive way, and it
allows us to collect data useful for studying the characteristics of touching as a means of communication.
Experimental results confirm the interface’s ease of use for inexpert users.

Key Words: Human-robot interaction, intention understanding, touch communication, motion development

1. Introduction

In order for robots to become truly integrated into
everyday life, it will be necessary for humans to be
able to interact with them in a natural and intuitive
way. This consideration has recently lead to many
different studies in human-robot interaction with the
aim of finding natural ways by which humans can
communicate with robots.

Touch is an important method of communication
employed by humans, particularly in teaching. Even
at the earliest ages, touching behaviors have been
found to be a very important element of interactions
between humans and preschoolers [1]. At older ages,
touch is frequently used in the teaching of sports
or dance [2], for instance by instructors correcting a
learner’s posture or motion. Touch is particularly ap-
pealing as an intuitive method for humans to teach
robots, and has been employed to program robot
arms, for example, by Voyles and Khosla [3] and, more
recently, by Grunwal et al. [4].

In this study, we investigate the effectiveness of
touching as a mechanism for transferring knowledge
about the body from a human to a small humanoid
robot. Small humanoid robots are quite popular and
are becoming increasingly available at relatively low
cost. However teaching a new motion to a humanoid
robot is currently a time consuming task, because the
standard method is through the use of motion editors
which require the user to set the position of each joint
in each “keyframe.” Although other techniques, such
as motion capture and retargetting [5], can be em-
ployed, these methods still require the human teacher
to learn specialized techniques.

Our goal is to create a method by which humans
can intuitively edit a robot motion without any spe-
cial training. We therefore have developed a method
for humans to teach robot motions through an “ob-
serve and correct” cycle, similar to a human dance
or sports instruction. In each teaching episode, the
human teacher watches the robot perform a motion,

observes what is wrong or could be improved, and
touches the robot’s body parts to instruct the robot
how to refine the motion. The robot then repeats the
behavior with the modifications, and the cycle can be
repeated several times until the movement is satisfac-
tory to the teacher.

The teacher’s touching action is a method of encod-
ing and transmitting their internal image of what the
robot postures should be. To make communication
successful, the robot must then interpret the meaning
of these touches in terms of adjusted body postures.
However for the robot, this reconstruction process is
not a trivial task. Not only can different touches have
the same meaning – for instance, touching several dif-
ferent parts of the arm could all mean that the arm
should move backwards – but similar touches could
have different meanings depending on the context.

In order for the robot to understand the meaning
of the teacher’s touch, we take the approach that
the mapping can be constructed online from exam-
ples provided by the teacher. While observing the
robot performs a real task, the teacher chooses key
moments to provide instruction. The teacher touches
parts of the robot, and the robot responds by mov-
ing its joints according to the learned mapping. It is
worth to stress that this is different from what is usu-
ally done with robot arms employed, for instance, in
painting and welding. In those applications, in fact,
the operator pushes the robot in desired position, and
the arms moves passively following the applied forces.
In our approach the robot responds in a more active
manner, possibly moving joints which would not be
moved just applying force on the pushed sensor lo-
cations. The idea here introduced is that the system
should interpret the meaning of the touching, and not
require the user to bring each link in the desired po-
sition for each keyframe as is usually done with the
industrial robots.

If the robot’s responses to touches are incorrect, the
teacher can manually adjust its joints to teach the in-



tended meaning using a separate interface. This sim-
pler, lower level way of communicating motions allows
to handle the failures of the system in the interpre-
tation of the instruction meaning. The robot then
uses this information to update its internal mapping
from touch to joint angle changes. As instruction pro-
gresses, the learned mapping continues to be refined
until ultimately the human only needs to touch the
robot and the robot properly adjusts its body.

2. Implementation
The purpose of the interface is to let the user

(teacher) play a motion and modify it through touch-
ing, and provide information about the intended
meaning of touches if needed. During the develop-
ment of a motion, the user pushes the robot’s body
parts, and the robot tries to predict the intended joint
angle changes based on previous examples of context,
touches and joint modifications. Inference of intended
joint changes due to touches is done using a k-nearest
neighbor (k-NN) algorithm on a database contain-
ing previous examples of context, touch, and pose
changes. If the human believes the robot does not
yet have a good mapping, the user can directly set
the joint position and add this example of context,
touch, joint adjustments into the database of exam-
ples used by the k-NN algorithm, thereby improving
the future ability to infer the touch intentions.

Let touch information be represented by a vector
T = (T1, ..., TnT ), where the value of each element rep-
resents the duration that each of the nT tactile sensors
distributed over the robot’s surface were pushed. We
encode context with the following random variables.
Let:

• posture vector P = (P1, ..., PnP
) be the angles

formed by each of the nP joints,
• orientation vector O = (O1, O2, O3) be roll, pitch

and yaw, respectively,
• velocity vector V = (V1, V2, V3) be the velocity

at the center of gravity.

P is needed because the meaning of touches may de-
pend on the posture, as in the previous example in
which touching the lap means different things depend-
ing on if the robot is standing or squatting. Likewise,
the meaning of touches may also depend on O, for
instance whether the robot is standing or lying down.
Finally, touches may also depend on the velocity vec-
tor V , especially if the robot is experiencing strong
accelerations, for example if it is falling down.

To simplify notation, let X = (T, P,O, V ) be the
concatenation of touch T , posture P , orientation O,
and velocity V . Let M = (M1, ..., MnM

) be a vec-
tor of desired changes in the nM joint angles (i.e.,
motor commands). Then our goal is to learn a func-
tion F : X → M (“touch interpreter”), which maps
an input vector x to a set of joint angle changes m.
Currently, we use a variation of the k-NN algorithm,

which, despite its simplicity, performs very well in
many applications. Aside from simplicity, an impor-
tant reason we chose this algorithm was the ease with
which additional training data can be incorporated.

Formally, let the tuple (xi, mi) represent the ith
training example provided by the human, and let
S = ((x1,m1), (x2,m2), ..., (xnS ,mnS )) be a set of nS

training examples. Sometimes we need to refer to spe-
cific elements of variables, so let tis represent the value
of element s of the touch sensors in the ith training
example, and similarly for the other variables. Then,
given a new input x′, the system’s output m′ can be
computed by a weighted sum of the joint modifica-
tions in H, i.e.,

m′ =
nS∑

i=1

g(x′, xi)mi, (1)

where the weight function g(x′, xi) is based on the
Euclidean distance between test point x′ and training
point xi.
2·1 Weighting schema

We want the weighting function g to output rela-
tively larger values when the two inputs are close to
each other, and relatively smaller values when the in-
puts are far away from each other. A simple choice
for this function that has the desired properties is

g(x′, xi) = 1/(1 + ‖x′, xi‖), (2)

where ‖·, ·‖ is Euclidean distance. Since the units
of the various input vector components are hetero-
geneous, it is important that each input vector com-
ponent be normalized. This can be done by first di-
viding each element by its standard deviation in the
example set, which is the same as replacing the dis-
tance function with a Mahalanobis distance using a
diagonal covariance matrix.

Unfortunately, this technique does not give any
“priority” to more important elements – for instance,
the touch information does not get any more impor-
tance than the context features. This means that
points with a very similar context (ex, similar pos-
ture) may dominate the determination of the output,
irrespective of the touching pattern. This is exac-
erbated by the relatively high dimension of the input
space and the limited number of example points. This
can lead to very unintuitive behaviors, for instance if
a user is focusing on a leg motion and therefore only
provides examples involving a leg, then pushing on an
arm will cause the leg to move.

To solve this problem, we modify g(x′, xi) to be zero
if the set of activated (i.e., nonzero) touch sensors in
ti is not a subset of the active touch sensors in t′, i.e.
g(x′, xi) = 0 if

∏

{s:t′s=0}

(
1− δ(tis)

)
= 0, (3)



t1
*= 0 t2

*> 0 t3
*= 0 t4

*> 0 t5
*> 0 t6

*= 0 tn
*= 0...

t1
1= 0 t2

1> 0 t3
1= 0 t4

1= 0 t5
1= 0 t6

1=0 tn
1=0...

t1
2= 0 t2

2> 0 t3
2= 0 t4

2> 0 t5
2= 0 t6

2=0 tn
2=0...

t1
3= 0 t2

3= 0 t3
3> 0 t4

3= 0 t5
3= 0 t6

3=0 tn
3=0...

t1
4= 0 t2

4> 0 t3
4> 0 t4

4= 0 t5
4= 0 t6

4=0 tn
4=0...

Input 
touch information

Collected 
examples

Consider

Consider

Discard

Discard

Red = pushed sensor 
White = not pushed sensor

Fig.1 Examples of considered and discarded exam-
ples applying the described rule.

Input:400ms

Distance: 100

Input:500ms

Distance: 200

DISTANCE BASED

pushing time

(input)

Acquired example

Input:push 300ms

Input:200ms

Joint modification

(output)

Input:100ms

Input:400ms

Input:500msINTUITIVELY EXPECTED

Fig.2 Expected behavior versus the behavior ob-
tained scaling the output by a decreasing func-
tion of the distance.

where the threshold function δ(u) = 1 if u > 0 and 0
otherwise. Some examples are provided by Fig. 1.

Another problem with this scheme is that, due to
the symmetry of the distance function, it is not pos-
sible to distinguish whether a current input sensor
has been pushed for a longer or shorter time than the
nearby prototypes in the training set. This can lead
to unintuitive behavior regarding the relationship be-
tween the duration of a touch and the magnitude of
joint angle changes. As a simplistic example, suppose
a particular sensor was active in only one training ex-
ample, and it was pushed for 300 milliseconds, and
this corresponded to a single motor joint change of 40
degrees. Although a user might naturally expect that
pushing for less time will cause a smaller change in
that joint, while a longer press should produce a larger
joint angle change, the result with the current scheme
would be that any touch on that sensor with a du-
ration different from 300ms would result in a smaller
angle change. Fig. 2 illustrates this problem.

To overcome this counterintuitive behavior, we
compute two factors, αi and βi, and redefine g as

g(x′, xi) = αiβi

∏

{s:t′s=0}

(
1− δ(tis)

)
, (4)

where
αi =

∏

{s:ti
s>0}

t′s/tis, (5)

is a value which increases linearly as the pushing time
increases; the result is that increasing the pushing
time of one sensor will only increase the weight of
the examples in which that sensor was pushed, and it
will not have an effect on the weights of other exam-
ples. The second factor βi accounts for the context

(a) (b)

Fig.3 (a) Humanoid Robot VisiON 4G. (b) The 3D
rendered model, where the left upper arm and
forearm have just been pushed. It also shows
the projection of the center of gravity onto the
ground (an orange sphere) and its velocity (a
blue arrow).

information, as well as for the touch sensors which
are active in the input but are not active in the ith
example. This is defined as

βi = 1/(1 + di), (6)

where

d2
i =

∑
t′s

2 +‖p′−pi‖2 +‖o′−oi‖2 +‖v′−vi‖2. (7)

Essentially, di is a Euclidean distance between x′

and xi, except ignoring the touch sensors which are
nonzero in xi (since they are used already in αi).

3. Experiment
We used VisiON 4G, a humanoid robot with 22

degrees of freedom (Fig. 3(a)). It is impractical to use
touch sensors directly on the robot’s body for several
reasons. The small size of these humanoids makes
it difficult to place and wire touch sensors over the
entire body. Another difficulty with attempting to
directly use touch for teaching these small robots is
that the robot motions are often quite fast, so real-
time interaction might be difficult for a human.

To overcome these issues, we developed a system
which combines the real-world robot actions with a
virtual touch-screen driven interface. In this system:

1. A motion is performed by the physical robot, and
the position of the robot body is recorded with a
motion capture system.

2. A computer interface allows to the user to watch
a virtual 3D reconstruction of the recorded mo-
tion performed by the robot. The user can pause,
rewind, and step through frames at their leisure.

3. The user chooses an instant where the posture
of the robot should be modified, and playback is
frozen at that point.

4. The user touches the robot model’s body parts
on a touch screen to modify the robot’s posture.



Motion capture system

Humanoid 
robot

Markers

Touch screen

Play the motion 
on the physical robot

Modify the motion touching 
the virtual touch sensors 

Fig.4 Phases of the motion development in the ex-
periment.

Currently we use a touch screen but other devices,
such as a haptic joystick, or simply a mouse, could
also be used. When the posture in one moment is
modified, it becomes a new keyframe, and the motion
in the surrounding frames is then altered via interpo-
lation. In the current implementation a simple linear
interpolation is used.

The joint positions are acquired using the poten-
tiometers and the overall orientation of the robot is
captured using a motion capture system. The on-
screen playback displays the robot’s links as paral-
lelepipeds with size and joint positions proportional to
the link size and joint positions of the real hardware.
Each parallelepiped’s face simulates a touch sensor.
Because the touch screen currently only tracks a single
point, and discards pressure information, the user is
allowed to touch various parts of the 3D-model in one
keyframe, and the duration of each touch is consid-
ered to be the pushing intensity. As the user touches
the robot, the parts being pushed become darker red
(see Fig. 3(b)).

If the system fails to predict the desired modifica-
tion, which can be immediately seen by the robot’s
response, the user can manually correct the robot’s
joints. To do so, the interface allows the human to
independently switch off any of the motors, and the
human can then move the limbs of the physical robot
into the desired position. To fine tune the various an-
gles, the interface provides one slider for each of the
servomotors. The system can then acquire the robot’s
new joint angles, and then stores the context, touch,
and joint angle changes as a new training example.
Fig. 4 depicts the motion development process.

We used the interface to teach two motions: jump-
ing (with the help of a rubber band pulling the robot
up since the servo torque is not sufficient for liftoff)
and walking. At the beginning, the robot always
failed to interpret the touch meaning and the user
needed to correct the robot’s interpretation. The fre-
quency of the correction gradually decreased as the
robot acquired the examples. We could finally de-
velop both motions. Fig. 5 shows an image sequence
of the learned jumping motion, which was taught in

Fig.5 An image sequence of the developed jumping
motion.

just seventeen minutes. Teaching the same motion us-
ing a traditional motion editor took more than forty
minutes. More comparisons on the teaching time re-
quired in the future work.

4. Conclusion and future work
We have developed an interface for teaching robots

through touching, which allows the user to continu-
ously refine the meaning of their touches by directly
manipulating the limbs of the robot. Through the
experiment, it is shown that the robot is able to un-
derstand the touch meaning from the touch sensor
information and contextual information (robot’s pos-
ture, orientation, and velocity). The result will be im-
portant when the robot needs to construct the touch
interpreter in unsupervised manner. We are now in-
vestigating which information is important for under-
standing touch meaning. We think that “Teaching by
touching” will provide us not only an useful interface
to develop a robot motion but also a research frame-
work to study how a robot or a person understands
other’s intention.

[1] J. R. Movellan, F. Tanaka, I. R. Fasel, C. Taylor,
P. Ruvolo, and M. Eckhardt. The RUBI project: a
progress report. In Proc. of the ACM/IEEE inter-
national conference on Human-robot interaction, pp.
333–339, 2007.

[2] K. Kosuge, T. Hayashi, Y. Hirata, and R. Tobiyama.
Dance partner robot -ms dancer-. In Proc. of the
2003 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 3459–3464, 2003.

[3] R. Voyles and P. Khosla. Tactile gestures for hu-
man/robot interaction. In Proc. of IEEE/RSJ Interna-
tional Conference on Intellingent Robots and Systems,
pp. 7–13, 1995.

[4] G. Grunwald, G.Schreiber, A. Albu-Schaffer, and
G. Hirzinger. Touch: The direct type of human in-
teraction with a redundant service robot. In Proc. of
the IEEE International Workshop on Robot and Hu-
man Interactive Communication, 2001.

[5] A. Nakazawa, S. Nakaoka, K. Ikeuchi, and K. Yokoi.
Imitating human dance motions through motion struc-
ture analysis. In Proc. of the IEEE/RSJ Interna-
tional. Conference on Intelligent Robots and Systems,
pp. 2539–2544, 2002.


