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Abstract

Learning and development are essential processes for

an animat to adapt itself to environmental changes so

as to accomplish a given task. This paper proposes

a single mechanism for learning and self-improvement

that results in learning curves similar to the \U-shape"

phenomena observed in several psychological experi-

ments concerning the human learning process such as

in language acquisition. The basic idea is that (1) the

animatmonitors its success rate in goal achievement so

as to perceive environmental changes instead of relying

on signals from a teacher, and (2) in order to reuse ac-

quired knowledge and accelerate reinforcement learn-

ing, the animat does not memorize the action values

but transfers only the learned policy. The resultant

policy (a state transition map where transitions indi-

cate the best actions) may not be optimal in any given

environment but it may be able to better handle dif-

ferences between environments. We apply this model

to a mobile robot navigation problem for which the

task is to reach the target while avoiding obstacles by

means of uninterpreted sonar and visual information.

Our experimental results demonstrate the validity of

the model.

1. Introduction

Learning and development are essential processes for bio-

logical and arti�cial systems alike. Robots, which may be

required to adapt themselves to di�erent environments,

provide a typical example. Conventional methods achieve

goals in di�erent environments by employing a di�erent

module to cope with each kind of environment. However,

such methods are limited by the capacity of processing

modules. How do biological systems overcome this prob-

lem and how could adaptive animats do the same?

In psychology, several experiments indicate the \U-

shape" phenomena in the learning of various kinds of

skills in humans (Elman et al., 1996). First learning im-

proves monotonically, then performance drops, and �-

nally it rises up again. A typical example can be ob-

served in children who are learning the past tense, that

is, to conjugate both regular and irregular verbs correctly

(Rumelhart and McClelland, 1986). Researchers had dis-

puted whether a single or a dual mechanism was impli-

cated. An simple solution involves one mechanism for

regular verbs and another for irregular. Instead, Rumel-

hart and McClelland (Rumelhart and McClelland, 1986)

showed that a single mechanism plus a carefully de-

signed learning schedule could give the same U-shaped

results. Despite much debate and criticism (Pinker and

Prince, 1988; Plunkett and Marchman, 1991; Marcus

et al., 1992), micro U-shaped curves have been observed

in child learning processes for vocabulary development,

past tenses of English verbs, physical event cognition,

and so on. An arti�cial neural network has produced

similar results (Plunkett et al., 1992), indicating that a

single mechanism could cope with di�erent tasks. New

tasks were introduced after �xing the policy for the tasks

learned so far. That way, the policy that had already

been learned was not unlearned while new skills were

being acquired.

In this paper, we propose a single mechanism for

learning and self-improvement in a mobile robot. The

robot must overcome a navigation problem in di�erent

environments. The robot learner continually monitors its

success rate in achieving the goal in order to perceive

changes in the environment when it encounters them.

Thus, we distinguish our system from models assumed in

several psychological experiments and in arti�cial neural

networks as applied to supervised learning since these

models make use of explicit signals from a teacher. The

learner does not need to �nd changes in the environment

unless its success rate worsens.

A task domain similar to ours has been dealt with in

the lifelong learning area of machine learning (Thrun and

Mitchell, 1996). This approach reuses learned policies as

a priori knowledge to accelerate improvement. Tanaka

and Yamamura (Tanaka and Yamamura, 1997) applied

a similar idea to a simple grid-world navigational task

using a method which combined reinforcement learn-



ing with stochastic gradient ascent. We distinguish our

method from these because

1. although they accelerate learning, the robot must

have a di�erent policy for each kind of environment;

our model has only a single policy.

2. more importantly, to learn multiple policies, the

robot is explicitly informed of a change in environ-

ment; the robot in our model detects a change only

when necessary, because the success rate worsens.

To realize a single policy mechanism and accelerate

learning, the robot does not keep the action values ob-

tained by reinforcement learning in the previous environ-

ment. It only uses the policy (state transition map where

transitions indicate the best actions) for action selection.

We also adopt the \learning from easy missions"

(LEM) paradigm (Asada et al., 1996) by which the ini-

tial positions of the robot are controlled to accelerate the

learning. Since LEM is basically considered as a tech-

nique for learning in a single environment, we do not

deal with it in details here.

The resultant policy obtained by our model does not

seem optimal in each individual environment, but may

absorb the di�erences between multiple environments.

The remainder of this article is structured as follows.

First, the method is explained in details with a brief sum-

mary of reinforcement learning, especially Q-learning.

Next, the task and some assumptions are given. Finally,

we examine the experimental results to test the validity

of the model and consider future work.

2. Learning and Self-Improvement

2.1 Basics of Reinforcement Learning

Before getting into the details of our system, we brie
y

review the basics of Q-learning (Kaelbling, 1993). For a

more through treatment, see (Watkins and Dayan, 1992).

We assume that the robot can discriminate the set S

of distinct world states, and can take the setA of actions

on the world. The world is modeled as a Markov pro-

cess, making stochastic transitions based on its current

state and the action taken by the robot. Let T (s; a; s

0

) be

the probability that the system will transit to the next

state s

0

from the current state-action pair (s; a). For each

state-action pair (s; a), the reward r(s; a) is de�ned.

Without initial knowledge on T and r, we construct

incremental estimates of the action values called Q val-

ues on line. Starting with Q(s; a) at any value, usually

0, every time an action is taken update the Q value as

follows:

Q(s; a)( (1� �)Q(s; a) + �(r(s; a) + 
max

a

0

2A

Q(s

0

; a

0

)):

(1)

where r is the actual reward value received for taking

action a in a situation s, s

0

is the next state, and � is a

learning rate (between 0 and 1).

2.2 Algorithm

As described in 1, the basic ideas of our method are:

1. by monitoring its success rate, the robot can decide

when to restart Q-learning, regardless of the actual

change in the environment it encounters (this ap-

proach is quite di�erent from existing methods); and,

2. in order to accelerate learning, the action values ob-

tained by Q-learning in the previous environment are

not reused for Q-learning in the current environment,

but only the policy (action selection) is used. Actu-

ally, we have attempted to reuse the action values,

but we have often observed that they prevented the

robot from learning a new policy.

The algorithm is as follows:

1. Quantize the state space as S.

2. Apply Q-learning to the initial environment, and ob-

tain the policy P : S ! A(A:action set) with the

success rate R

s

3. Apply P to any environments unless R

s

decrease.

4. If R

s

decreases, then �nd statesS

r

� S where P fails

to achieve the goal, and modify P for such states by

applying Q-learning as follows until R

s

recovers to

pre-speci�ed adaptability rate �.

(a) Apply Q-learning to S

r

� S. Action selection

during the learning is as follows:

if s 2 S

r

[ S

n

follow the normal action

selection in Q-learning, where S

n

� S

denotes inexperienced states.

else follow P

(b)

5. Go to 3 with the obtained policy P .

The adaptability rate � determines the extent to

which re-learning occurs, that is:

R

sd

= R

sc

+ �(R

sp

� R

sc

); (2)

where R

sp

; R

sc

; R

sd

denotes the success rates in the pre-

vious environment, in the current one, and the desired

one, respectively.

Based on the selected state vector, we apply the algo-

rithm to the given task with the following speci�cations:

{ the learning rate � = 0:25, and the discounting factor


 = 0:9.

{ If the robot reaches the target, the positive reward 1

is given. Otherwise 0.

{ One trial terminates if the robot reaches the target,

makes a collision with any obstacles, or the given

time limit expires.



3. Task, Robot, and Assumptions

3.1 Our Robot

Our robot has a Power Wheeled Steering (hereafter

PWS) system driven by two motors. We can send com-

mands to each motor independently. In our experiment,

we quantized each motor command !

l(r)

into three lev-

els which correspond to forward, stop, and backward,

respectively. Totally, the robot has 9 actions.

The robot is equipped with a ring of 12 ultrasonic

range sensors (ranging from 0.0 to 300 cm), which have

high accuracy for incident angles of less than 15

�

from the

surface normal. The robot is also equipped with a CCD

camera. These sensors have their inherent characteristics

as follows:
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Figure 1 Sensory information

{ Sonar

Using 12 sonar sensors, our robot can sense its sur-

rounding environment in robot centered polar coor-

dinates as a pro�le of the distance D

i

(i = 0 � 11)

as shown in Figure 1(a). Each sonar sensor in the

ring has a �eld view of roughly 30

�

. Sonar sensors

cannot identify the object (the target or something

else).

{ Vision

Image processing provides the position and size of the

target in the image, even if the object's sensory pro-

jections are deformed by occlusion (see Figure 1(b)).

However, it is not given information on how to detect

obstacles and, therefore, cannot detect them.

3.2 Task

target
obstacle

obstacle
avoiding reaching

mobile robot

Figure 2 Task and environment

The task of the robot is to reach the target while

avoiding obstacles as shown in Figure 2. As mentioned

earlier, there are two di�culties with this task:

{ visual and sonar information has not been pre-

assigned to speci�ed roles in order to accomplish the

given task; therefore, the robot has to learn what

kind of information is to be used in which situation.

In other words, the sensory data has not been inter-

preted for the robot, and

{ both target reaching and obstacle avoidance tasks

have to be achieved simultaneously, through the

learning process.

Nakamura et al. (Nakamura et al., 1996) have devised

a system that has a limited ability to cope with the above

problems in a single isolated environment, but it su�ered

from the curse of dimensionality: a huge state space. In

addition, the environment may change in a few ways

here:

1. target and obstacles con�guration may change, and

2. the number of obstacles may also change.

Therefore, a learned policy obtained in a single environ-

ment may not be applicable to di�erent environments,

and usually it takes an enormous amount of time if the

robot learns from scratch.



3.3 State Vector Selection

As mentioned above, the state space construction prob-

lem is one of the most serious issues in reinforcement

learning even in a single isolated environment. Since our

robot has a considerably large sensor space, we have to

build a reduced-size state space from the original sensor

space. As primitive features, we have selected the center

position g

x

and the height g

h

of the target image from

vision, and the following from sonar pro�le (see Figure

3).
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Figure 3 Primitive features from sonar pro�le

Since these features still constitute a large feature

space, we have checked all combinations of state vec-

tors under the constraints of memory space and limited

learning time in a single environment, and selected the

following state vector x for the task. To focus on the

skill acquisition and self-improvement, we skip the details

of this procedure, which have been published elsewhere

(Minato and Asada, 1998).

x =

0

B

B

@

x

1

x

2

x

3

x

4

1

C

C

A

=

0

B

B

@

g

x

g

h

�

min

d

min

1

C

C

A

(3)

4. Experimental Results

In order to show the validity of the proposed method,

we have applied three kinds of methods to a series of

�ve di�erent environments called A, B, C, D, and E of

which top views are shown in Figures 4 and 5 where a

solid black circle and gray circles indicate the target and

obstacles, respectively. As we can see, the con�guration

of the goal and obstacles, and/or the number of obstacles

are di�erent from each other.

Figure 4 Environment A and successful trajectories

(a) B (b) C

(c) D (d) E

Figure 5 Four more environments and successful trajectories



Three methods are:

1. Q-learning with multiple policies: the robot is in-

formed when the environments changes, and all ac-

tion values are initialized for new learning

2. The proposed method:

3. Another method similar to the proposed one: instead

of policy transfer for action selection, all the action

values are always retained during the learning.

Each trial terminates when

{ the robot reaches the goal,

{ the robot makes a collision with any obstacles, or

{ the pre-speci�ed period (300 time steps) is expired.

Figure 6 shows the change of the success rate of the

Q-learning with multiple policies. The horizontal axis in-

dicates the number of trials. The success rate is measured

every 500 trials, the �rst 200 of which are for normal Q-

learning, and the remaining 300 of which are for success

rate measuring based on the current policy (action se-

lection is �xed). If the success rate stably achieves the

pre-speci�ed one (here 90%), then the policy is �xed and

all 500 trials are for success rate measuring. As men-

tioned in 1, we applied the LEM (Learning from Easy

Missions) paradigm, in this case, three learning stages

(easy, moderate, and hard ones) are prepared, therefore

two sudden drops can be seen until around the 35,000th

trial where the environments changes from A to B, and

all the action values are reset to all zeros for new learn-

ing in B. Similarly, the robot encounters C, D, and E.

Totally, about 145,000 trials are needed for the robot to

adapt itself to di�erent environments.

Figure 7 shows the change of the success rate of the

proposed method. The pre-speci�ed success rate is 90%,

the same as the above, and we set the adaptability rate �

as 0.8. The shape of the curve until around the 35,000th

trial is completely the same as in Figure 6, but here-

after, the curve has di�erent shape from that by the

�rst method. The changes of the environments have not

been informed, but the robot has perceived these changes

by monitoring the success rate. Comparing with Figure

6, the total learning time is almost half, and when it

encounters A again, the robot has not perceived any

changes because the success rate has not dropped down.

This implies that the resultant policy is capable of not

simply adaptation but also generalization, too.

As the acquired knowledge, the proposed method

transfers only the current policy. Further, we may ex-

pect to use the action values to accelerate new learning.

Figure 8 shows the result of this attempt where it has

taken much longer time to adapt itself to B and C, and

what's worsen is no convergence can be seen for D un-

til the 200,000th trial. The main reason seems that the

state transitions can be di�erent and sometimes oppo-

site, therefore it may take much more time to obtain the

correct action values than in case of resetting all action

values to zeros.

Examples of the successful trials are shown in Figures

4 and 5 as robot trajectories, some of which do not seem

optimal due to a single policy mechanism.

number of trials [x10000]

0

80

60

40

20

100

0 2 4 10 12 146 8

environment A B C D E
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5. Discussion

We have proposed the model of skill acquisition and self-

improvement for a mobile robot to adapt itself to dif-

ferent environments. The learned policy have shown the

similar curves in human child learning process often seen

in psychological experiments, that is, micro U-shapes.

Similar to the method in (Rumelhart and McClelland,



1986), that is, carefully designed input schedule, we have

implemented the LEM paradigm to control the order of

the situations the robot encounters.

There are many issues to be considered: 1) the de�-

nition of the task class in which the robot can gradually

skill up the learned policy, 2) state vector selection which

is currently o�-line process but should be included in on-

line learning process, and 3) real robot experiments.
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